Übungen zur Einführung in die Geometrie

SS 2007 2. Juli 2007 Blatt 10

57. Zerlegung eines rechtwinkligen Dreiecks in ähnliche Teildreiecke

Ein rechtwinkliges Dreieck ABC (γ = 90°) wird durch die Höhe h_c =CD in zwei Dreiecke zerlegt. Zeigen Sie, dass die Dreiecke ABC, ACD und BCD zueinander ähnlich sind. Leiten Sie daraus die Sätze aus der Satzgruppe des Pythagoras ab.

58. Spezielle Werte der Winkelfunktionen

Bestimmen Sie mit Hilfe des Satzes von Pythagoras die exakten Werte der Winkelfunktionen sin, cos, tan für die Winkel von 0, 30°, 45°, 60°, 90°.

59. Satzgruppe des Pythagoras

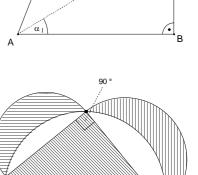
Mit Hilfe der Sätze aus der Satzgruppe des Pythagoras lassen sich Strecken irrationaler Länge konstruieren, etwa eine Strecke der Länge $\sqrt{2}$ als Hypotenuse eines rechtwinkligen Dreiecks mit zwei Katheten der Länge 1 LE.

Konstruieren Sie eine Strecke der Länge $\sqrt{21}\,$ auf 3 Arten

- a) mit Hilfe des Satzes von Pythagoras,
- b) mit Hilfe des Höhensatzes,
- c) mit Hilfe des Kathetensatzes.

60. Berechnungen an einem Viereck¹

Vom Viereck ABCD sind gegeben:


$$\overline{AB}$$
 = 11,0 cm α_1 = 31,0° \overline{CD} = 8,1 cm γ = 126,0°

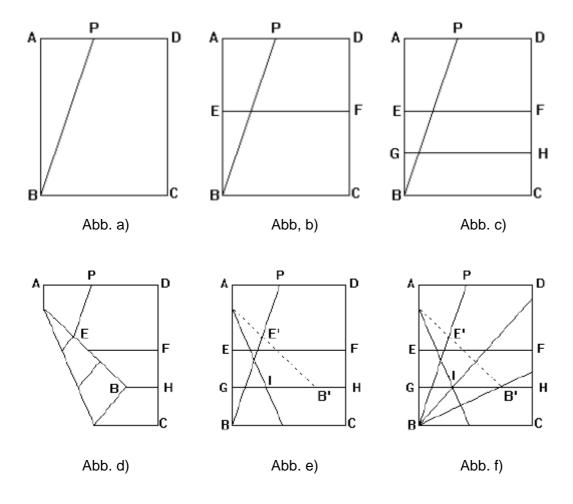
- Berechnen Sie den Abstand des Punktes D von AC sowie den Winkel \angle CAD.
- Auf \overline{AC} liegt ein Punkt E; er ist von A und D gleich weit entfernt. Berechnen Sie die Länge von \overline{AE} .

61. Möndchen des Hippokrates

Zeigen Sie: Der Flächeninhalt des rechtwinkligen Dreiecks ist so groß wie die Summe der Flächeninhalte der beiden Möndchen.

¹ Sie dürfen bei dieser Aufgabe alle Ihre Trigonometriekenntnisse aus der Schule verwenden.

62. Ein letztes Mal: Winkel dritteln – dieses mal durch Papierfalten


Aus: Henn: ORIGAMICS - PAPIERFALTEN MIT MATHEMATISCHEM SPÜRSINN

Die folgende Anleitung zeigt Ihnen, wie Sie einen beliebigen Winkel (< 90°) durch eine Faltkonstruktion exakt dritteln können!

Nehmen Sie ein rechteckiges Blatt (DIN A4-) Papier ABCD und falten den zu drittelnden Winkel <CBP (*Abb. a*). Falten Sie dann eine Parallele EF zu BC etwa in der Blattmitte (*Abb. b*) und die Mittelparallele GH von EF und BC (*Abb. c*). Falten Sie anschließend eine Ecke so ab, dass E auf BP und gleichzeitig B auf GH liegt (*Abb. d*). Markieren Sie die Bildpunkte als B' und E' und falten zurück (*Abb. e*). Die letzte Faltkante schneidet GH in I.

Behauptung: die Linien Bl und BB' dritteln den Ausgangswinkel < CBP (Abb. f).

Beweisen Sie dies.

