Die Aufgaben 1 und 2 sollten auch mit EUKLID bearbeitet werden.

Blatt 6

1. Hintereinanderausführen von 3 Geradenspiegelungen Die Geraden f, g und h begrenzen

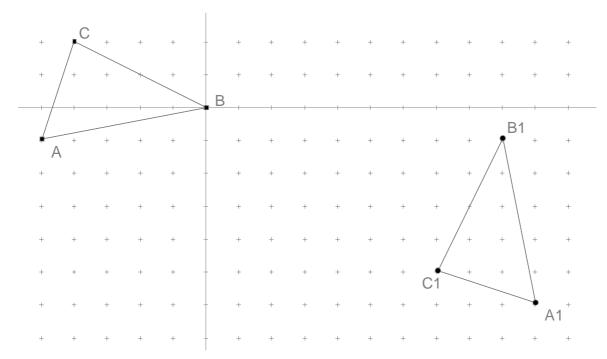
- a) ein rechtwinklig-gleichschenkliges Dreieck ABC; f \perp g
- b) ein gleichseitiges Dreieck ABC.

Eine Figur F soll an diesen 3 Geraden gespiegelt werden. Konstruieren Sie jeweils diejenige Abbildung, welche das Hintereinanderausführen der 3 Geradenspiegelungen $S_f \circ S_g \circ S_h$ ersetzt.

- 2. Die Dreiecke ABC und A₁B₁C₁ sind zueinander kongruent.
 - a) Begründen Sie dies mit Hilfe von Kongruenzsätzen aus der Mittelstufengeometrie.
 - b) Dreieck ABC kann durch maximal 3 Achsenspiegelungen auf Dreieck A₁B₁C₁ abgebildet werden.

Warum ist dies möglich?

Konstruieren Sie solche Achsenspiegelungen.



3. Eine Figur wird um Z(0,0) um 60° gedreht und anschließend um 2 Einheiten in x - Richtung und 3 Einheiten in y-Richtung verschoben.

Ersetzen Sie dieses Hintereinanderausführen von Abbildungen durch eine einzige Kongruenzabbildung.

Bestimmen Sie anschließend rechnerisch die Daten für diese Abbildung.

- 4. a) Zwei Spiegel sollen unter 90° aufeinander stoßen. Was sehen Sie, wenn Sie auf die Stoßkante blicken?
 - b) Zwei Spiegel sind hintereinander und zueinander parallel aufgestellt. Was sehen Sie, wenn Sie sich zwischen die beiden Spiegel stellen?
 - c) Zwei Spiegel sind hintereinander und beinahe parallel zueinander aufgestellt. Was sehen Sie nun, wenn Sie sich zwischen die beiden Spiegel stellen? Hinweis: Im KG III, 1. OG sind im Flur vor den Räumen der Physik verschiedene Spiegel aufgebaut!

5. Schubspiegelung

Eine Figur wird an der Geraden g gespiegelt und anschließend um $\stackrel{\rightarrow}{v}$ verschoben. (siehe Abb.)

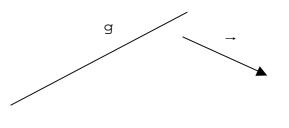
- (a) Ist die Reihenfolge "zuerst spiegeln, dann verschieben" vertauschbar?
- (b) Konstruieren Sie eine Gerade h und eine Verschiebung \vec{w} so, dass

$$S_g \circ V_{v}^{-} = S_h \circ V_{w}^{-}$$
 ur

und
$$h \parallel \vec{w}$$

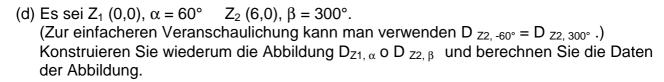
ist.

 Z_1



6. Verkettung zweier Drehungen

- (a) Es sei Z₁ (0,0), α = 30° Z₂ (6,0), β = 60°. Zeigen Sie, dass D_{Z1, α} o D_{Z2, β} eine Drehung D_{Z, γ} ist. Konstruieren Sie Z und γ . Begründen Sie, dass γ =90° ist.
- (b) Berechnen Sie für (a) die Koordinaten von Z mit Hilfe von Winkelfunktionen.
- (c) Es sei Z_1 (0,0), α = 30° Z_2 (6,0), β = 270°. Zeigen Sie, dass $D_{Z_1,\alpha}$ o $D_{Z_2,\beta}$ eine Drehung $D_{Z,\gamma}$ ist. Konstruieren Sie Z und γ . Begründen Sie, dass γ =300° ist. Erklären Sie, warum man auch mit β =-90° und γ =-60° rechnen könnte.



7. Verkettung von Achsenspiegelung und Drehung

g sei eine Gerade, $Z{\in}\,g$, $D_{Z,\alpha}$ eine Drehung um Z mit Winkel $\alpha.$ Zeigen Sie, dass

- (a) S_g o $D_{Z,\alpha} = S_h$,wobei $Z{\in}\,h$ und $\angle g,h = {}^t\!\!\!/_2\alpha$,
- (b) $D_{Z,\alpha} \circ S_g = S_k$,wobei Ze k und $\angle k,g = \frac{1}{2}\alpha$.

8. Schubspiegelung

- (a) Sei Sch_{g,v} eine Schubspiegelung mit der Spiegelachse g und dem zu g parallelen Verschiebungsvektor \overrightarrow{v} . Sei P ein beliebiger Punkt, P' sein Bildpunkt. Zeigen Sie, dass die Achse g die Strecke \overline{PP} halbiert.
- (b) Konstruieren Sie für die abgebildeten Dreiecke ABC und A*B*C* die Spiegelachse g und den Verschiebungsvektor √√, mit Hilfe von (a).

