Seminar zur fraktalen Geometrie - Aufgabenblatt 2 Längen und Flächeninhalte von Monstern

Hilfsmittel: Geometrische Folge und Reihe

Geometrische Folge: $\lim q^n = 0$ für alle q < 1

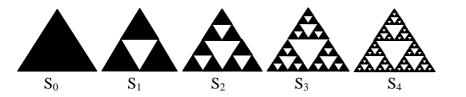
Endliche geometrische Reihe $\sum_{i=1}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$

Unendliche geometrische Reihe $\sum_{i=0}^{\infty} q^{i} = \frac{1}{1-q}$ für alle q < 1

1. Problem: Sierpinski-Dreieck

Das Sierpinski-Dreieck kann erzeugt werden, indem man aus einem gefüllten gleichseitigen Dreieck S₀ das "mittlere Viertel" wegnimmt und diesen Prozeß immer wieder auf die verbleibenden kleineren Teildreiecke anwendet.

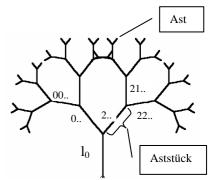
- Berechnen Sie für das Sierpinski-Dreieck den Anteil der Fläche der n-ten Näherungsfigur S_n bezogen auf das Anfangsdreieck (der Flächeninhalt des Anfangsdreiecks S₀ sei 1 Flächeneinheit).
- 2. Was ergibt sich als Flächeninhalt der Grenzfigur S_{∞} ?
- 3. Was ergibt sich für die Länge der Randlinie der n-ten Näherungsfigur S_n bezogen auf den Umfang des Anfangsdreiecks? Was ergibt sich als Länge der Randlinie der Grenzfigur S_∞?



2. Problem: Bäume

- 1. Jeder "Ast" eines binären Baumes mit Verkürzungsfaktor q<1 hat endliche Länge. Berechnen Sie diese Länge l_{∞} in Abhängigkeit der Länge l_{0} .
- 2. Berechnen Sie, bei welchen Verkürzungsfaktoren q die gesamte Baumlänge, d.h. die Summe aller Aststücke, endlich ist. Dabei bezeichne ein Aststück das kleinste Stück eines Astes.
- 3.* Zeigen Sie: Die Menge der Äste eines Binärbaumes ist nicht abzählbar. (Die Menge der Äste eines Binärbaumes kann bijektiv auf die Cantor-Drittelmenge abgebildet werden. Benutzen Sie dazu die Ternärdarstellung der Punkte der Cantor-Menge Jeder Ast kann als unendliche Folge von 0 und 2 aufgefasst werden).

In der nebenstehenden Abbildung ist wegen der Übersichtlichkeit nur die 5.Approximation eines binären Baumes gezeichnet.



3. Problem: Schneeflockenkurve (von Koch-Kurve).

Die Fläche der Schneeflocke entsteht aus einem gleichseitigen Dreieck, indem jede Dreiecksseite gedrittelt wird und über dem mittleren Drittel jeweils ein weiteres gleichseitiges Dreieck aufgesetzt wird. Dieser Prozeß wird immer wieder wiederholt.

Nennt man die Fläche auf der $\,$ n-ten Stufe dieses Prozesses $\,$ F $_n$, dann ist die Grenzfigur $\,$ F $_\infty$ die Vereinigung aller $\,$ F $_n$.

Die Schneeflockenkurve (von Koch-Kurve) K_{∞} ist die Randlinie der Fläche F_{∞} . Dabei bezeichnen wir mit K_n die Randlinien der n-ten Flocke F_n .

- 1. Nehmen Sie an, das gleichseitige Dreieck, mit dem die Konstruktion begonnen wird, habe den Flächeninhalt 1. Berechnen Sie die Flächeninhalte aller Flächen F_n sowie von F_{∞} .
- 2. Berechnen Sie die Längen aller K_n als Vielfache der Seitenlänge s_0 des Ausgangsdreiecks.
- 3. Untersuchen Sie das Grenzverhalten dieser Längen von K_n, wenn n gegen ∞ geht.
- 4. Ist K_∞ eine "Kurve"? In welchem Sinne ist sie das, welche Probleme sehen Sie dabei?

